The Community Earth System Model: A Framework for Collaborative Research

www.cesm.ucar.edu

James W. Hurrell

Chief Scientist, CESM and Community Climate Projects

Climate and Global Dynamics Division, NESL

Jim Hurrell

The Community Earth System Model

www.cesm.ucar.edu

Outline

Overview and Community Involvement

Major Activities and Achievements

- ✓ Model releases and CMIP5
- Selected Science Highlights
 - ✓ Improved Variability
 - ✓ Future Climate Simulations
 - ✓ Data Assimilation
- Best Practices and Challenges

Jim Hurrell

ihurrell@ucar.edu

The Community Earth System Model

www.cesm.ucar.edu

- **CESM:** a set of different geophysical component models that exchange boundary data via a coupler
- Code base developed over 20+ yrs: runs on multiple platforms, resolutions and model configurations
- **CESM** is used to:
- **Explore Earth climate history and** processes responsible for variability and change
- Estimate future of environment for policy formulation
- Developed by NCAR NSF, DOE, Universities, National Laboratories
- Fully documented, frequently and freely distributed, fully supported releases
- Capacity Building (e.g., tutorials and workshops)

Modeling the Earth System

Jim Hurrell

Community Involvement: CESM Management

A Community Resource

Over 3,000 sites from 130+ countries >320 TB since January 2008

>1500 Registered Users of CESM1.0

Courtesy Gary Strand

Major Activities and Achievements

Jim Hurrell

ihurrell@ucar.edu

CESM Releases and Simulations

CESM release mechanism

- ✓ New release infrastructure: code, diagnostics and input data are obtained via subversion servers
- ✓ First version of CESM and supporting documentation was released for community use in June 2010 (CCSM4.0 in April 2010)
- ✓ Enhanced documentation, diagnostics and revamped web pages

Benchmark and CMIP-5 simulations

- ✓ Control, historical, initialized decadal prediction and climate change
- ✓ CCSM4.0 and CESM (CAM5, CAM-CHEM, WACCM, BGC)
- ✓ All Core, and most Tier 1/2, experiments complete & available (ESG)

CESM Experiments and Diagnostics

The Community Earth System Model:
A Framework for Collaborative Research

Jim Hurrell jhurrell@ucar.edu

Many New Results and Capabilities

Special Collection J. Climate Papers:

http://www.cesm.ucar.edu/publications/pub.info.html

or at AMS:

http://journals.ametsoc.org/page/CCSM4/CESM1

Selected Highlights: Improved Variability

Jim Hurrell

ihurrell@ucar.edu

Pacific Variability: ENSO

Neale et al. (2008); Deser et al. (2011); Gent et al. (2011)

NCAR

Period → freq of max spectral power of Niño3.4 SST
 L_v → width of zonal wind stress anomalies

Period → freq of max spectral power of Niño3.4 SST
 L_v → width of zonal wind stress anomalies

Period → freq of max spectral power of Niño3.4 SST $L_v \rightarrow$ width of zonal wind stress anomalies

Jim Hurrell

Period → freq of max spectral power of Niño3.4 SST $L_v \rightarrow$ width of zonal wind stress anomalies

Equatorial SST Composites

El Niño

Latitude/Time cross-sections

La Niña

Deser et al. (2011)

North Atlantic Variability

Composite Madden Julian Oscillation (MJO)

CCSM4 1°(1980 -1999)

Observed (1980 - 1999

"Compared to other global coupled models, CCSM4 exhibits relatively high skill in simulating intraseasonal oscillations. [It] has pronounced energy in the MJO band and is comparable to the best models [analyzed in Kim et al. 2009]

Eight phase composite of OLR (color) and 850 hPa winds

20th Century coupled experiments, Boreal Winter

Subramanian et al. (2011)

NCAR

20th Century and Future Climate

North American Annual Surface T (°C)

North American Annual Surface T (°C)

NCAR

Extremes: Number of Warm Days

NCAR

Initialized Decadal Predictions

Interactive Ensembles: Multiple Component Instances and DART

Used for CMIP5 ocean data assimilation — 48 POP instances

Jim Hurrell

CFS Planning Meeting

25-26 August 2011

Mean Temperature Bias (0-294m)

Yr 2000

Yr 2005

Persistence of large-scale bias reduction for 5+ years, especially with data assimilation

DART – Anderson et al. (2009); Raeder et al. (2011); Yeager et al. (2011); Tribbia et al. (2011)

The Community Earth System Model: A Framework for Collaborative Research

Jim Hurrell jhurrell@ucar.edu

North Atlantic: Upper Ocean Heat Content Anomaly

Discernable Predictive Skill

Meeting Community Research Needs

- Developing and supporting an ESM requires a large, dedicated effort. CESM taps into a broader pool of expertise and minimizes duplicative efforts.
- Wide community use of CESM and its data (peer-reviewed journal articles).
- NSF Review: "Unqualified success" pushing the frontier of climate science

Best Practices

- Openness, inclusiveness and transparency. Ongoing community access to source code and simulation data; documentation; workshops, etc.
- Clear and continual communication. Especially important is frequent communication between scientists developing the model and software engineers: essential for developing a robust code.
- Strong infrastructure support (e.g., coupling development; flexible I/O; post-processing and diagnostics; performance tuning; porting; etc.)
- Multiple levels of rigorous code testing. This includes testing of the fully coupled system in various configurations.
- Appropriate reward systems and clear job development paths.

NCAR

An Ongoing Challenge

Meeting Research and Model Development Needs

- Rapidly increasing complexity
- New model components and coupling requirements
- Numerous and new grids (e.g., unstructured)
- New capabilities (e.g., data assimilation)

With Simultaneous User Community Needs

- Frequent and fully documented releases
- Multiple platforms; various configurations and resolutions
- Ease of creating "out-of-box" experiments
- Data availability and post-processing capabilities
- Increasingly diverse user community and requirements
- **Capacity Building**

Jim Hurrell

High Resolution Global Climate Simulations

20 Jul 00 h

NCAR is sponsored by the National Science Foundation

